Stochastic Hamiltonian Systems: Exponential Convergence to the Invariant Measure, and Discretization by the Implicit Euler Scheme
نویسنده
چکیده
In this paper we carefully study the large time behaviour of u(t, x, y) := Ex,y f(Xt, Yt)− ∫ f dμ, where (Xt, Yt) is the solution of a stochastic Hamiltonian dissipative system with non gbally Lipschitz coefficients, μ its unique invariant law, and f a smooth function with polynomial growth at infinity. Our aim is to prove the exponential decay to 0 of u(t, x, y) and all its derivatives when t goes to infinity, for all (x, y) in R. We apply our precise estimates on u(t, x, y) to analyze the convergence rate of a probabilistic numerical method based upon the implicit Euler discretization scheme which approximates ∫ f dμ.
منابع مشابه
Approximation of the invariant measure with an Euler scheme for Stochastic PDE's driven by Space-Time White Noise
In this article, we consider a stochastic PDE of parabolic type, driven by a space-time white-noise, and its numerical discretization in time with a semi-implicit Euler scheme. When the nonlinearity is assumed to be bounded, then a dissipativity assumption is satisfied, which ensures that the SDPE admits a unique invariant probability measure, which is ergodic and strongly mixing with exponenti...
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملStrong convergence of a general implicit algorithm for variational inequality problems and equilibrium problems and a continuous representation of nonexpansive mappings
We introduce a general implicit algorithm for finding a common element of the set of solutions of systems of equilibrium problems and the set of common fixed points of a sequence of nonexpansive mappings and a continuous representation of nonexpansive mappings. Then we prove the strong convergence of the proposed implicit scheme to the unique solution of the minimization problem on the so...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کامل